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Course 4: Polymers, Particles and Surfaces




Course Content & Time Table

BLOCK 1: Introduction and materials overview

11-9
18-9
25-9
2-10

Lecture 1. Intro to biomaterials and biology
Lecture 2. Naturally derived biomaterials
Lecture 3. Implants and metals

Lecture 4. Polymers, Particles, and Surfaces

BLOCK 2: Interactions and specific applications

9-10
16-10
30-10
6-11

Lecture 5. Materials for drug delivery and targeting: DNA nanotechnology
Lecture 6. Materials for cell adhesion: scaffolds

Break

Lecture 7. Materials for immune engineering: vaccines

Lecture 8. Materials for tissue engineering: heartvalves

BLOCK 3: Measurements, regulation and translation

13-11
20-11
27-11
4-12

11-12
18-12

Lecture 9. Characterization and performance

Lecture 10. Sensors and diagnostic devices

Lecture 11. Translation to industry, patents, spin-offs (EPFL start ups)
Lecture 12. Regulatory aspects and trials (EPFL TTO)

Lecture 13. Revision and conclusion

Open discussion and hand in of lab papers



Today’s focus

Polymers & Particles Surfaces




Polymers
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e.g. Cellulose, Collagen etc.

Synthetic
e.g. PEG, PS, PMMA etc.
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Polymer coatings

Antifouling Hemocompatible

4. Chain Chemistry
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Bioeliminable:
E.g. ‘PEGylation’ of drugs

Increase in solubility
due to the PEG
hydrophilicity

X Decreased
accessibility for
proteolytic enzymes
and antibodies

Increase in size
to reduce kidney
filtration

Drug Discovery Today
Volume 10, Issue 21, 1 November 2005, Pages 1451-1458

Antifouling

Increase circulation lifetime
Increase size

Reduce immunogenicity (?)
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PEG — current issues
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Hydrogels

Hydrogels are 3D networks of cross-linked polymers

90+ % is water

Crosslinks can be covalent or non-covalent

Swelling occurs until in equilibrium with osmotic pressure

a (neutral) hydrogel experiences a thermodynamic force of mixing and

a contractive force that become balanced once a hydrogel reaches its
equilibrium swelling state

Pore size is dependent on the average molecular weight of polymer \
chain segments between adjacent crosslinks and acts as a selective

barrier with regard to the permeability of substances

G = N,kT =

E=2G(1+v)

pRT
M,

N, is the number of polymer
chains per unit volume

Mc = average molecular s
weight between cross-links

v = Poissons ratio L" |

Hydrogel network

. Chemical crosslinking (covalent bond)
. Physical crosslinking (junction)
It Physical crosslinking (entanglement)
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Hydrogels: Cross linking
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Importance of pore size

Function and performance of a hydrogel
depend on

1) the polymer structure
i. Hydrophobic ?
ii. Crosslinks ?
iii. Degradation ?
2) the gel properties
i. Mesh size
ii. Elasticity
3) the drug & incorporation method
i. Size
ii. Covalent?
iii. Physical ?

TIME!
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Chromosome

Nucleus

Programmable polymers

DNA Structure

Nucleosome

Nucleotide
base pairs:

B Guanine
. Cytosine

Adenine

M Thymine

Nucleotide

Hydrogen bonds

Thymine Adenme
5'
*v
g ©°

----- 0 ol
‘=0
‘Q ----- Cytosme g 5

I |
I I l

Sugar-phosphate Bases Sugar-phosphate
backbone backbone

12



Reprogramming DNA interactions

Short synthetic DNA strands can make new architectures!
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Seeman, N (1982). "Nucleic acid junctions and lattices". J. of Theor. Biol. 99 (2): 237-47



Nanoparticles vs Microparticles

Microscale I Nanoscale
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Nanoparticles: Overview
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Nanoparticles: Lipid Based

Phospholipid

Rgals Hydrophobic

IGerdi tail
Liposome

Sizes: 10 nm - submicrometer
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Nanoparticles: Lipid Based

Hydrophilic drug
3\ DNA/RNA/sIRNA
Brush regime R 3
(High PEG density) A R
Y
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Surface-
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Mulder et al, NMR Biomed. 2006;19:142-164
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Microparticles - Overview

Core shell Polymersomes Microgels
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Microparticles — Effect of Shape

Functional behavior of polymeric particles in these fields is strongly influenced by their shape.

size from 100 nm to 30 um.

. . . 19 .
https://doi.org/10.1016/j.jconrel.2007.03.022  www.pnas.org/cgi/doi/10.1073/pnas.07053261041 Julie A. Champion, Samir Mitragotri



Microparticles — Microgels

SR R 6%%"‘ é%‘“j Diffusion Diffusion Water uptake,  gyrface erosion  Bulk erosion, or
K / Y Wy through water  through polymer swelling, induce new hydrolisis of
filled pores network pores polymer
it i 1 - 1
Macro gel Microgel
Small versions of a bulk hydrogel Drug reservoir
Sci. Pharm. 2019, 87(3), 20; 20

https://doi.org/10.3390/scipharm87030020
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Surfaces are everywhere!




Time defines surface (and material!) robustness
Biomaterial use is time dependent!

Biocompatibility is the ability of a material
to perform with an appropriate host response

in a specific application during a certain time

Physical / mechanical properties Chemical properties Biological properties

- Strength - Degradability - Cell adhesion

- (visco)-elasticity - Toxicity - Release of active components
- Poresize - Water content
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SURFACES

What challenges do biomaterial surfaces face?



v SURFACES

What challenges do biomaterial surfaces face?

The pH Scale
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Challenges and Characteristics

surface

Surfaces have unique reactivity (—> catalysis)
The surface is inevitably different than the bulk
The mass that makes up the surface is very small

Surfaces easily contaminate

AL N e

Surface molecules can exhibit considerable mobility

Example:
Why is erosion vs degradation an important engineering parameter?

— - -
erosion

T
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Bulk
degradation . quantum physicist Wolfgang Pauli used to say:
‘God made solids, but surfaces were the work of devil’.



Location is important:

Biomaterials inside the body
main role: replacement of specific tissue

main problems: immune system, uncontrolled protein adhesion,
foreign body response, corrosion, mechanical failure

Biomaterials outside the body
main role: guiding of new tissue formation

main problem: contaminations, UV, temperature, dust




Surfaces inside the body
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Foreign Body Response

Protein Matrix Fibrous

Proteins: ; : s :
Implantation adsorption deposition encapsulation

e Modulate cell adhesion

e Trigger the biological cascade
resulting in foreign body response
e Central to diagnostic assays
/sensor device design

e |nitiate other bioadhesion: e.g.,
marine fouling, bacterial adhesion

Bare o
biomaterial>
surface § © _ £¢

Time '




Fibrous encapsulation - FBGC
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Intensity

Implications of Time

<« Acute — Chronic — Granulation tissuge ———»
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Surface Modifications and Characterization

Why?

Clean a surface

Reduce/eliminate protein adsorption
Reduce/eliminate cell adhesion
Reduce bacterial adhesion

Reduce thrombogenicity

Promote cell attachment/adhesion
Alter transport properties

Increase lubricity
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Surfaces outside the body

Chemical functionality
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Passive versus Active Surfaces

Immune modulation
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Cell adhesion: Focal Adhesions

Cytoskeleton
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Nanotubes
(Anodization)
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Nanocolloids

(Colloidal Lithography)

Nanodots
(Phase Separation,
Electron Beam
Lithography)

Nanogrooves

(Electron Beam Lithography,
Nanoimprinting, Replica

Moulding)

Nanoscale, 2017, 9, 18129-18152

Nanotopology

Nanopits
(Replica Moulding,
Electron Beam
Lithography,
Nanoimprinting)
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Nanopillars
(Replica Moulding,
Anodization, Colloidal
Lithography)

(a) Stem cell interaction with nano-structure scaffolds

(b) Nanopatterned surface to mediate stem cell
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RSC Adv., 2018, 8, 17656-17676



https://doi.org/10.1039/2040-3372/2009
https://doi.org/10.1039/2046-2069/2011

Preparation of non-fouling surfaces

to prevent non-specific protein/cell or bacterial adhesion to reduce thrombogenicity

Protein adsorbed ( ug / cm?)

1 | | | l 1
10 20 30 40 50 60

Y,,, (erg/ cm?)

(after Y. Ikada et al., Polymers as Blomaterials,Plenum Press, NY 1984)

Hydrophilic surfaces are currently
seen as the most promising
strategy for controlling protein
deposition on biomaterials.

PVA
PMMA
PET
PP
HDPE
PTFE
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Surfaces should be hydrophilic
or very hydrophobic.

PEG vs SLIPS

Hydrophilic versus hydrophobic



Physical adsorption Chemical immobilization

Short-time use Long-time use
Ex. Drug delivery

Example of “gold standard”
Surface modification with PEO derivative.

Antifouling

Increase circulation lifetime

Increase size

Reduce immunogenicity (?)

Increase in solubility
_________________________________ due to the PEG
hydrophilicity

/9<_‘ Decreased

Increase in size accessibility for

tp reduoe kidney proteolytic enzymes
filtration and antibodies
B ta a3 ot v e
Drug Discovery Today

Volume 10, Issue 21, 1 November 2005, Pages 1451-1458



Polymer coating
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SLIPS: omniphobic surfaces

Slippery Liquid Infused Porous Surfaces

Immiscible

A\
. Lubricating Film

\

Porous solid Porous solid infused  Liquids slide off when
with lubricating liquid tilted

Image credit :www.seas.harvard.edu
LP

These slippery surfaces repel almost
any fouling challenge a surface may

Ll face—whether from bacteria, ice,
Sellsolvats ‘ | P water, oil, dust, or other contaminants.

Nature Biotechnology 32, 1134-1140(2014)



The Gecko Test




Conclusion

Polymers provide enormous engineering opportunities: Chemists and bioengineers
need to work hand-in-hand

We need to understand both the chemical engineering potential as well as the
fundamental biological processes that result from cell interactions cell in order to
design the best nano / micro material platform

The size and shape of particles influence their interaction with cells
The choice of material and chemistry defines functional behavior and stability

Atoms and molecules that reside at the surface of a biomaterial have special
reactivity and direct biological responses, good and bad

An engineered biomaterial surface will never look the way it was designed when
used in contact with biological material

The intended biomaterial function is compromised by the host’s
foreign-body response

Nothing is perfect: defect in a coating is an initiation side for side reactions / failure!



Test Questions

Name 5 stimuli that can be used the degrade a hydrogel

Design and sketch a nanoparticle that can deliver a protein drug in a tumor, and;
releases this drug upon temperature change. Highlight what material and architecture “
you choose.

When would you use nanoparticles versus microparticles?

Draw a schematic of a hip implant and indicate the various surfaces with their properties /
effects on prosthesis function

What is a foreign body response? Do all biomaterials trigger it?

What is anti-fouling? Name 2 strategies to achieve this behavior at a biomaterials surface.
Will biomaterials that are anti-fouling trigger a foreign body response?



